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I. Introduction

Statistical interpolation procedures to provide initial conditions for
operational numerical weather prediction models were first introduced in
the Soviet Union and later in Canada (Kruger, 1969; Rutherford, 1972).
This methodology was not seriously considered at NMC until the transition
of the data base to a fundamentally nonhomogeneous nature became an
established trend. Somewhat earlier, other modeling groups in the inter-
national community evinced interest in statistical, or "optimum," interpo-
lation, largely stimulated by activities connected with the Global Atmospheric
Research Program. By the middle 1970's, interest in optimum interpolation
was widespread. Global assimilation systems based on this concept were being
developed at a number of institutions, including the National Center for
Atmospheric Research (Schlatter, 1975), the Geophysical Fluid Dynamics
Laboratory (Miyakoda et al., 1978), and the National Meteorological Center
(Bergman, 1979; McPherson et al., 1979) in the United States, as well as the
European Centre for Medium Range Weather Forecasts (Lorenc et al., 1977).

An understanding of the theory of optimum interpolation is necessary to
appreciate the reasons for such widespread and continuing interest. This
paper represents a general discussion of the theory and illustrates some of
its important aspects with simple examples. For a more comprehensive treat-
ment of the theory, the reader would do well to consult the original work of
Gandin (1963).1

II. Analysis Equations

Consider a scalar field, representing an arbitrary meteorological
variable, with a true value at any point in three-dimensional space given
by F(x,y,p). We assume that the field is sampled by randomly-distributed
imperfect observations F°(xi,yi,pi) which contain both the truth F(xi,yi,pi)
and an error e(xi,yi,pi). Thus,

F°(xi,yi,pi) = F(xi,Yi,Pi) + s(xi,yi,pi). (1)

The observational error a may arise from several sources, including
instrument error, sampling error, and communications error. We also assume
that an estimate of F is available, denoted by F(x,y,p); this field is
often called the background field, or "first guess," and by implication is
in error to some degree. To correct the error in the background field at
a given point, we first estimate the error at the observation locations:

fi ° = F°(xi,yi,Pi) - F(xiYiPi) (2)

1The presentation in this paper is largely taken from the paper by Bergman
(1979) and unpublished notes prepared by Dr. J. P. Gerrity of NMC.



2

or, from (1)

fi = F(xi,Yi,Pi) + s(xiyi,pi) - F(xiyi,pi), (3)

and then form a linear combination of the fi° to provide a corrected
estimate, or "analysis," of the true field at a point (,n,M,):

n
Fa(,n,) =F(Tn,) + wifi°

i=l

n
= F(Qn,) + E wi{F(xiYi,pi) + s(Xi,YiPi)

i=1 l
- F(xi,Yi,pi)} (4)

Statistical interpolation requires that the coefficients wi be chosen so
as to minimize the mean-square error in the estimate Fa. Thus, introducing
the true field on both sides of (14), we obtain

F(tn,%) - Fa( ,n , ) = E( ,n,)
n

= f( ,n,) - I wi[f(xi,Yi,pi) + e(xi,Yi,pi)] (5)
i=l

where f = F - F represents the true error in the background field.
The coefficients are determined by requiring that the expected value of
E2 be a minimum. We require

n

awj (E2) = 4 f ( ' ) - I wi[f(Xi,Yi,Pi) + (xiyiPi)]} 2 = 0. (6)

The notation may be condensed by defining

fi = f(xi,Yi,Pi)

fg = fM(,n,)-

The minimization process indicated in eqn. (6) then results in a system
of N equations in the N unknown weights wj,

N

wj[fifj + iEcj + fiEj + fjEi] = fgfi + fgSi, i = 1,N (7)
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where fifj = covariance of the true error (F - F) in the background
field at point (xi,yi,pi) with the true error at point

(xj,yj,pj);

sicj = covariance of the observational error at point (xi,yi,pi)
with that at point (xj,yj,pj);

fgSi, fiij, fjEi = covariance of the true forecast error at one point
with the observational error at another point;

fgfi = covariance at the true forecast error at the point to be
updated with the true forecast error at observation point

(Xi,yi,Pi).

It is important to note two implicit assumptions arising from eqn. (7)

- the mean value of f = F - F is assumed to vanish;

- the covariances are statistically homogeneous.

It is also important to note that these assumptions are required only
locally, in the vicinity of the point being updated, rather than globally.

The assumption of local homogeneity means, for example, that the
variance of forecast error

2 =
of2 fifi

is independent of position in the neighborhood of the grid point to be
updated. It may, however, vary from neighborhood to neighborhood.
This assumption is probably valid most of the time.

Assuming that the long term mean value of the true forecast error
at a grid point vanishes is somewhat less valid. For example, it is
known that most forecast models underestimate the wind speed in high-
wind-speed regions such as jet streams. Thus, the mean value of the
forecast error in the eastward wind component of the upper troposphere
at a grid point in middle latitudes probably is not zero. The statis-
tical basis for this method is therefore eroded to some degree in such
situations, and the interpolated value Fa will in general depart from
optimality in the sense implied by eqn. (6).

It is generally assumed that terms (in eqn. 7) of the form fisj

vanish; that is, that errors of observation are not correlated with
errors of forecasts. Certain instances can arise where this assumption
is questionable but in the present NMC data assimilation system, such
terms are not considered.
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With these assumptions, eqn. (7) reduces to

N
wj[fifj + Eiej] = fgfi, (8)

J

or, in matrix form

(a~~ 2 1 E251

f (f f~~ + E)E (f f + E: s). (f f+E n wff
(Of+ 2 (1 2 12 1 3 13 n n 1 

(ff1+ ~C)5(Gf2 + j~)f f +se) (f f~ +s6cn) w2 f(f2 2 2 3 2 32 2.n 2 g 2

(f f + C ) + ...... *~~~~ ~ L C L C (9) .

nl n 1 fn gn

The coefficient matrix is symmetric and is usually positive definite. If
its elements are known, or can be specified, then the system may be solved
for the vector of unknown coefficients wj, given that the right-hand-side
is also known or determinable. Once the Wj have been calculated, the anal-
yzed value of F at point (n,) may be determined from eqn. (4).

Equations (8) or (9) illustrate the mechanism by which the statistical
interpolation method treats a nonhomogeneous data base. For the first
observation, represented by the top row of eqn. (9), we note that themain
diagonal term is composed of the sum of the forecast error variance
and the observational error variance a . We may assign a value to 
appropriate to the type of observation. Likewise, s1 maybe assigned a
different value. In practice, observational errors are assigned by classes:
e.g., radiosonde temperatures are assigned an error variance determined for
radiosondes, but remote soundings have their own error variance. Examples
of values currently used are given in the third lecture of this series, and
the determination of these values is discussed in the fourth lecture.

The off-diagonal elements of eqn. (9) also contain error terms of the

form Eisj, i # j. Such terms describe the tendency of some observational
systems to produce reports with spatially correlated errors. For example,
errors in remote temperature soundings frequently tend to be of the same
sign in local areas--a local "bias." Thus, if a remote sounding at one
point can be determined as being too warm, its immediately adjacent neighbor
is also likely to be too warm. In such a situation, the covariance between

the errors in the two soundings would be nonzero and positive. In contrast,
given two nearby radiosonde reports, one of which is apparently too warm,
the other is as likely to be too cold as too warm. Consequently, the co-

variance between the radiosonde errors would vanish.



5

Before proceeding to a discussion of the determination of the elements
of the coefficient matrix and the right-hand vector of eqn. (9), we note for
future reference that we may extract from eqn. (6) an expression for the
expected error of interpolation, also referred to as the "estimated analysis
error";

N

E = fg - I wifi (10)

Thus, once the wi have been determined, the estimated analysis error may be
calculated.

III. Covariance Modeling

Autocovariance

In principle, the several covariances appearing in eqn. (9) can be

determined from actual differences between forecasts and observations,
and therefore can be updated continuously. Serious difficulties attend
this in practice, not the least of which is the necessity of removing the
influence of observational error. In part for this reason, and in part

for reasons to be addressed in the next section, the covariances are
modeled by an analytic function.

Much discussion appears in the literature (see e.g., Thiebaux, 1975)
concerning the nature of modeled covariance functions and the sensitivity
of the resulting analysis to changes in the functions. General agreement
has not yet been firmly established. In the NMC system, it is assumed

that the geopotential height autocovariance is of the form

(hihj) = o2h e-KhS [1 + K pq2 ] (11)

where hi is the true forecast error in the geopotential height at point

(xi,yi,pi), and hj is the same quantity at another point (xj,y ,pi). The
height forecast error variance is denoted by h2, 2 = (xi-xj)f+ yi-yj)2,
and q2 = [kn(pi) - kn(pj)]. Equation (11) assumes that the true three-

dimensional forecast error covariance can be approximated by the product
of a horizontal and a vertical covariance function. The constants Kh and
Kp govern the shape of the analytic functions.

Figure 1 illustrates the assumed horizontal component of the analytic
autocovariance function for several values of the constant Kh. The co-
variances have been normalized, and so the curves represent correlations.
For Kh = 0.5 x 10- 6 Km-2, the correlation declines quite slowly with
increasing separation; it is still nearly 0.5 at 1200 km. For largest
value plotted, the correlation reduces to less than 0.5 beyond about 700 km.
The actual value currently used, 0.98 x 10-6 km-2, is approximately illus-
trated by the dashed curve in the diagram.



Horizontal component of the hITh covariance for several Values
of the constant Kh. The dashed curve is approximately that
used in the NMC Global Data Assimilation System. Curves
have been normalized by the forecast error variance.
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Figures 2 and 3 show actual correlations for climatological and forecast

_S ; errors respectively. These were calculated by forming residuals between the

background field and radiosonde observations for a network of stations over

North America. Covariances were then calculated with respect to the residual

el at Omaha, Nebraska, and normalized. The resulting correlations are illustrated

in the two diagrams, for December 1978 through February 1979.

Figure 2 depicts the result when the background field is climatology.

The pattern is distinctly elliptical, with its major axis oriented meridion-

ally. This is somewhat unusual--most such patterns are more circular--

and may be due to particularly persistent weather patterns in that particular

winter. An estimate of the average distance from Omaha to the 0.5 contour

turns out to be about 1200 km, in approximate agreement with the curve in

Fig. 1 for Kh = 0.5 x 10-6 km- 2. Thus, this value may be thought of as

appropriate when the residuals are computed from a climatological background

field.

When the residuals are calculated using a short-range forecast of the

NMC nine-layer global prediction model as the background, a more nearly

isotropic pattern with smaller magnitudes results. This is illustrated in

Fig. 3, also for December 1978 through February 1979. The area inside the

0.5 isoline is much reduced by comparison to Fig. 2, and the average

distance from Omaha to that contour is about 700 km. This compares

favorably with the Kh = 1.5 x 10- 6 km '2 curve in Fig. 1. The value in

actual use, 0.98 x 10-6 km- 2 , is treated as a universal value. It thus

represents a compromise between a value of Kh based on forecast errors in

w ~an area where forecasts are of relatively high quality, and one which
assumes a deterioration of forecast quality toward climatological skill

over data-sparse areas. __

The vertical component of the height autocovariance function is

illustrated in Figs. 4 and 5. In the former, Pi = 700 mb, and the auto-

covariances are therefore calculated with respect to 700 mb. In the

latter, Pi = 250 mb. Normalized (correlation) curves for two values of

Kp are displayed. The 6ircles indicate actual vertical correlations

of forecast error at Omaha for the December 1978-February 1979 data set.

For K = 5, the correlation decreases more rapidly away from Pi than with

Kp = 1.5. Actual correlations at Omaha lie between the two values for

Pi = 250 mb. For the lower level, the agreement below 700 mb between the
data and Kp = 5 is excellent. However, the agreement is not as good at

higher levels. Nevertheless, Kp = 5 is the value presently used in the

NMC system.

Scale Considerations

The covariance function defined by eqn. (11) is applied to a field of

residuals which contains a spectrum of scales of atmospheric phenomena.

If the individual residuals were completely independent, this function

could be thought of as a filter, the response of which is given by its

Fourier transform. Figure 6a gives the normalized covariance as a function

of separation for Kh = .98 x 10- km- 2, while the lower part of the diagram* presents the Fourier transform of the upper curve.
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For this extreme example, Figure 6b shows that small-scale patterns
in the residual field--wavelengths less than about 5000 km--could not be
accurately represented. Patterns with wavelengths of 3000 km would have
their amplitudes underestimated by 60%. Only those patterns with wave-
length longer than 10,000 km would be represented in the analysis with
reasonable fidelity. This would obviously represent a severe limitation
on the scales of phenomena that can be represented.

However, the assumption of independence is not valid. The statistical
interpolation method explicitly considers interobservational correlation.
Consequently, the covariance function cannot be thought of as a filter.

The actual weighting function is much more complicated; in particular it
is dependent on data distribution. A general response function is not
easily defined.

Cross-covariance

If one wishes to permit observations of the mass field to influence
the analysis of the motion field, and vice versa, this can be accomplished
by assuming that the residuals of the mass and motion fields behave in
accordance with the geostrophic and hydrostatic relationships. This is the
second reason for the assumption of analytic, differentiable forms for the
hh covariance.

Consider as an example the covariance of east wind component u(Eq,%)
with the geopotential height at some other point (x,y,z), where (C,z) =
Zn(pressure). The geostrophic equation may be written as

u(9,,¢) = - h(,n,) (12)
f ay

Let us form the covariance function u(~, n , C) h(x,y,z) by multiplying
both sides of eqn. (12) by h(x,y,z) and averaging over many pairs of u
and h. Thus

u(~,n,) h(x,y,z) = - gf h(,, h(xyz) (13)

Introducing the definition of the partial derivative,

u(E, , C) h(x,y,z)

(14)=g lim h(9,n+An,%) - h(~,n.,) . h(x,y,z) (14)
f Ar+0 An

or

g lim h(Q,n+Aj,C).h(x,y,z) - h(E,n,C)h(x,y,z) (15)
f ATI-*-0AC



14

But the bracketed quantity is the definition of the partial derivative of

the product, so that

u(,n,,) h(x,y,z) = - [h(~,rj,C) h(x,y,z)] . (16)TTII~~~~~~~~(6

It may also be shown that

h(x,y,z) u(Q,q,C) = - g -- [h(x,y,z) h(Q,O,r)] . (17)
f WY

Similarly, one can derive the uu autocovariance. First, multiply
eqn. (12) by u(x,y,z) and average over many pairs:

u(~,n,f ) u(x,y,z) = - g [h(Q,1n,) u(x,y,z)] . (18)
f Dy

Using the definition of the partial derivative

g lim h(,n+An,) -h(,n,9)
f~~An+ - _g li h~,+Ar) ~xy~) )u(x, y(19)

f ATI'-0> Tor

=g lim h(E,+Aq,j) u(x,y,z) - h(, n, C) u(x,y,z)
f An->O An (20)

or U 'TO (,, gau(~,q C) u(x,y,z) =- g 8an h(~,n,C) u(x,y,z) . (21)

But from eqn. (17), h(E,n,a) u(x, y, p) may be replaced to obtain

u(ETn,) u(x,y,z) = f .ay [h(C,n,T) h(x,y,z)]. (22)

We now consider cross-covariances between geopotential height and tempera-
ture: the hydrostatic equation may be written as

~t(,n,4) = g Rah[ ~, nf, ] .(23)

Multiplying both sides by h(x,y,z) and averaging over many pairs, we obtain
the cross-covariance h(x,y,z) t(,, ):

h(xyz) t(CIn,~) = -Rh(x,y,z) -im h(C,n,,+A%) -h(~,n,%) (24)Rx z ( ) - AC-+O
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or
...... - g lim h(xy,z) h(Q,Tnr+'%) - h(x,yz) h( ,n,)

.... _= - f A+0-:O (25)

or

h(x,y,z) t(g,n, ) = - h(x,y,z) h(E,n,) (26),f 

In a manner completely analogous to the determination of uu, the temperature
autocovariance can also beobtaineŽd! -___

t(x,y,z) tQ , = (R&) az; [h(x,y,z) h(E,n,)] (27)

Indeed, all of the cross-covariances and autocovariances necessary to

perform a complete analysis of h, t, u, and v can be derived from the
height autocovariance hh under the assumptions of geostrophic and hydro-
static balance among the residuals. Table 1 gives the complete set.

Table 1. Covariance of the row variable with the column variable in
terms of the geopotential autocovariance hh, assuming that
height, temperature, and wind residuals are related through
the geostrophic and hydrostatic equations.

h t u v..........-V-
h g~1ih-_h~h ~hh g 2hh g Dhh g _hh

~t 9 3h ) _ g 2Ehhh
RaR z fR y fR B x

g2 a 2_]h 2

_ g _ 1hg 2 2 g2! 2jhh g2 2j hh

U f a fR Tnaz f nfy 7 fnax

ga 22 __h g 2 a2 Ehv -f R DDy E fR zax
Figure 7 displays the horizontal elements of Table 1 in terms of the

correlation define as the covariance normalized by the variance. A value
of Kh = 0.98 x 10- km 2 has been used. Those elements which involve
vertical variations, such as ut, are shown in Fig. 9. Several points are
worth noting from Fig. 7, especially with regard to the derived quantities.
Consider, for example, the hu correlation. The diagram should be inter-
preted as illustrating the correlation of u-residuals in the domain with
the height residual to be analyzed at the central point of the diagram.
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Figure 7. Hori.zontal correlation functions. for geopotential and wind. Left to right
top row: h-h, h-u, h-v; middle row: u-h, u-u, u-v; botton row: v-h, v-u, v-v.

*Distance intervals correspond to 300 km. After Bergman. (1979). 
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In this framework, a positive u-residual (forecast u-component is too slow)

at the center of the negative lobe south of the grid point implies that the
geopotential at the central point should be decreased. Note that an
observed u-residual has zero correlation with the height residual along the
x-coordinate of the grid point being analyzed. Also, the maximum correlation
is slightly greater than 0.6 in absolute value, and occurs approximately 750
km north and south of the grid point. This distance is a function of the
assumed correlation function (eqn. 11) and specifically depends on the value
of Kh. Thus there is a scale limitation implicit in the forecast error

statistics, and one manifestation of this may be noted in that the maximum
effect of a wind observation will be realized in the mass analysis 750 km
distant from the observation.

Another noteworthy point is that the derived covariances or correlations
are not isotropic. Consider the derived uu, for example: the area of

maximum positive correlation is elongated in the upwind-downwind directions.
Figure 8, depicting actual uu correlations based on the Omaha network for
December 1978 through February 1979, confirms the general pattern of this
derived function.

One final point to be gleaned from the derived horizontal correlation
functions is that the u- and v-components of a given wind observation will
have different effects on the u- and v-analysis of a particular grid point.
Consider, for example, an observation located on the x-axis of the uu
field, but about 650 km west of the central point. An observed u-component
residual has a correlation of about 0.6 with the analyzed u-correction,
but the observed v-component residual has zero correlation with the
analyzed v-correction at the same central point.

We now consider the vertical components of the derived covariances.
Figure 9 displays the correlation functions corresponding to the vertical
parts of ht and ut as derived from hh, which is itself reproduced from
Fig. 5 for comparison. All curves indicate the correlation of the first

variable at 250 mb with the second variable at all pressure levels. The
cross-correlation functions plotted in Fig. 9 are derived in the Appendix.
As noted previously, there is reasonable agreement between the modeled
curve for hh and actual correlations calculated for December 1978-February
1979. The modeled curve does decline away from the level of application
more sharply than is indicated by the data, but the shape is in quite good
agreement.

The correlation between height and temperature shows a zero when the
two are at the same level, and extrema a short distance away. In accordance

with expectations based on hydrostatic equilibrium, positive (warm) tempera-
ture residuals below the level of the height contribute to an increase in
the height there. Likewise, a positive height change results from negative
(cold) temperature residuals above the level of the height. It is of

interest to note that the level of application is arbitrary; in particular,
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it can be specified as 1000 mb, in which case the correlation 
curve cor-

responding to the ht appears as in Fig. 10. A profile of temperature

residuals can therefore be used to specify--through the cross-correlations--

a height residual at 1000 mbs. Thus it is possible to infer from sounding

data alone information on the shape of a level near the surface, 
which

might be used as a reference level. This possibility is considered further

in a later section.

We note also from Fig. 9 that the correlation curve corresponding 
to

the ut covariance has relatively small amplitude; that is, the 
temperature

residual at any level does not convey much information about 
the wind

residual at any other level. This is because the temperature gradient

relates only to the wind shear, not to the wind itself. A reference level

specification is necessary to determine the wind. One way this may be done

is to integrate the hydrostatic equation to convert the temperature 
to

height, so that the wind at any pressure is related to the geopotential

height gradient at that pressure. When this is done statistically, the

correlation pattern appears as in Fig. 7. The Correlation pattern corre-

sponding to uh has a maximum greater than 0.6 in absolute value, 
or roughly

double the maximum of the correlation between winds and temperatures.

An example is presented in the next section which further explores 
the

relationships among heights, temperatures, and winds, and offers 
a sugges-

tion to profitably take advantage of those relationships in the 
analysis

system.

IV. Examples of the Theory and Its Implications

Cross-correlation analysis

Consider a profile of temperature residuals defined by the second

column of Table 2. Note that these are differences between predicted and

observed layer-mean temperatures, and so are assigned to pressures 
repre-

senting midpoints between standard pressure levels. According to the

theory outlined in the previous section, height residuals can 
be calculated

from the temperature residuals. For any level ,

h = a t + a t + ... + a t , (28)

where the ai can be determined by solving the system

tkt i ai = h tk, k = 1,10 (29)

The resulting h for standard pressure levels from 1000 mb to 100 mb are

given in the third column of Table 2.



Cross-correlation analysis

Consider a profile of temperature residuals defined by the second

column of Table 2. Note that these are differences between predicted and
observed layer-mean temperatures, and so are assigned to pressures repre-
senting midpoints between standard pressure levels. According to the
theory outlined in the previous section, height residuals can be calculated
from the temperature residuals. For any level Q,

h = a t + a t + ... + a t , (28)

where the ai can be determined by solving the system

tkti ai = h tk, k = 1,10 (29)

The resulting h for standard pressure levels from 1000 mb to 100 mb are
given in the third column of Table 2.



h = a t + a t + ... + a t , (28)
= 1 928 2 777 10 85

where the ai can be determined by solving the system

10

I tkti ai = httk, k = 1,10 (29)
1=1

The resulting h% for standard pressure levels from 1000 mb to 100 mb are

given in the third column of Table 2.
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Figure 10. Analytic ht correlation between 1000 mb height and temperatures
at higher levels.
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We next consider the determination of a u-component residual of 400
mb from the height and temperature profiles. First, let

40= a t + a t + ... + a t (30)
400 1 928 2 777 10 8S

and calculate the weights ai by solving the system

10

tkti ai = ugtk (31)
i=l

These weights are presented in column 4 of Table 2. Note that they are
all fairly small, uniformly negative at low levels and uniformly positive
in high levels, and tending toward cancellation. Importantly, note that
the smallest weight is an appreciable fraction of the largest (in absolute
value). Thus temperature information at all levels contributes to the
wind analysis at a given level; in this case, the calculated u-component
residual at a point assumed to be 750 km away from the temperature
residual profile is -0.43 m sec-1 .

Next, consider the determination of u400 from the height residuals,
which were themselves calculated from the temperature residuals:

u =b h + b h + ... b h . (32)
400 1 1000 2 850 10 100

The weights bj may be calculated by solving

10

hkhjbj = u hk , k = 1,10 (33)
j=1

The weights appear in the fifth column of Table 2. Both above and below
400 mb, the weights are small and alternate in sign at adjacent levels.
At 400 mb, however, the influence of h4Q is dominant in determining u;
as in the previous instance, u40 0 = -0.3 m sec- . This is further con-
firmed in column 6, which shows the weight assigned to h400 when only
that prediction is used in the determination of U 4 0 0 ; once again, u400
= -0.43 m sec- 1.

Finally, u4 00 was calculated using only the two temperature residuals
immediately adjacent to the 400 mb level. The weights in this case are
given in column 7. They are opposite in sign and nearly equal in magnitude,
and the value of u4 0 0 is -0.07 m sec - 1.

Thus it appears that the information content of an entire profile of
temperature residuals with respect to determining the wind at some level
can be condensed into a single geopotential residual at the level where the
wind is desired. This is due to the reference level implied in the complete
temperature profile and the statistical relationship between height and
temperature residuals. In practice, then, if temperature residuals are to
be used to calculate geostrophically-related wind residuals, the entire
temperature profile must be considered.
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Experiments with cross-correlation analysis, using
and height residuals to determine wind residuals.
explanation. 

t(°C)

-1. 9

-1.1

-0.2

+0.2

+0.5

+1.0

+1.4

+1.3

-0.1

-0.9

u4 00

h(m)

+4.4

+15.8

+17.7

+16.5

+14.0

+5.9

-2.9

-14.3

-13.9

-9.9

All t

+0.9

+0.14

+0.16

+0.14

+0.17

+0.20

-0.13

-0.15

-0.07

-0.08

-0.43

All h

0

0

-0.02

+0.05

-0.05

-0.49

-0.03

+0.02

-0.02

+0.01

-0.43

Weights

h400

- -

-0.5:3

-0.43

temperature
See text for

t45 0 , t35 0

+0.18

-0.19

-0.07

Interobservation Correlations

Consider a grid point g with two observations
correct the estimate Fg at g. In accordance with

(F1 ,F2
° )

eqn. (4)

nearby to

Fga = Fg + al(Fl° - F1 ) + a2 (F2
0 - F 2).

It is recognized that F 0i° are erroneous to some extent: thus

F + a(F - F1 + E + a2(F2 - F2 + 2 )F. = g +a 1(F 1 F1 + s1 ) + a2 (F2 F2 + 2)

(34)

(35)

where it will be remembered that F° = F + e. According to eqn. (8), mini-
mization of the mean-square expected interpolation error yields the
following two equations in the unknown coefficients a1 and a2 : 

(12 + s1 2)a + (flf2 + e 2 )a2 = fgf
koo)

(f 2fl + s2 2a 1 + (2 2 +£ 2 )a = fgf,

Table 2.

Pressure
(mb)

100

150

200

250

300

400

500

85

125

175

225

275

350

450

600

700

850

1000
928
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.... where the various correlations between truth and error havebeen neglected,P and 012 = flfl This pair of equations may be solved to obtain .

f f (f f~~~~~~~~~~~~~~~~~ + E f f a 2+e I-)(f f +-i-C.
a = g 2 (ff2 1 2 fgf 1 2 +2 )- f2+1'2 )fgf2 (37)
2 a2+ 2 2 2

2 2 a2 + £:2 (L2+ %2) (U2 + 2) _(f f2 +1 2+ ~~ i2 ~ 2\ 2/22 1
and

f f (a2 + 2) _ (f f? + e e )f f
g 2 +_ 2 1 2 g 2

a 1l= (G12+61
2 )(o2 2+s2

2) _ (flf 2 + 1Cl2) (38)

... In order to focus on the effect of interobservational correlation, we
assume perfect data: S = = 0. Then the weights are ._____

1 2

f'f2 f1f2 gff 022 - f f2 fgf2 
2 2 2 ~22 al 2 o2 2 _ (fl f2 ) 2

a ~ ~~~ CY
2 2 1 C

fgfl 22 -f f f2 f f2

2 F 2 _ (f f )2(40)

1 2 1 2 -. __

If the observations are uncorrelated, f2 f1 = flf 2 = 0, and we obtain

fg f2 (41)
a2 2 (41)

,2

f f

a1 2 (42)

1

thus the weight assigned each of the two observations is given by the

correlation of the observation with the grid point.

The relationahip between the covariance and correlation functions is

flf2 = a102 P12 , where p is the correlation. If the observations are
perfectly correlated, then the covariance may be replaced by

flf2 = UIf2,

because the correlation p = 1. Then it may be seen that the denominators
in (39) and (40) vanish. This represents a violation of the linear
system, since the equations are no longer independent.
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Next consider the case in which the correlation p is between zeropw ~and unity. Then the weights are given by

G2 G2 (G1 /G2 )a2
2- Pa1 2

a -- PCY 2 - (43)
2 Cli2 a, 2a 22 2(1-p2 )

and

C1 a2
2 - a1 a2 p(G2 /dl)

81= 2 (_a1, 
2 ( l-p 2 )

2 _

where G fgfl' G2 E f gf2' Note that G1/ i2 , G2/a2
2 are the weights for the

case when th wo--bservattfons ar uncorrelated. Wet furt simpliyby 

assuming that the observations are of the same variable, so that a1 = a2 '

We also assume for simplicity that the covariances between observations
and grid point depend on distance only, and that the two observations
are equidistant from the grid point, so that fg f f f G. Under

these circumstances the weights reduce to g 

al = a2 = 2(45)

For observations which are positively correlated, the weight accorded
each is reduced by comparison to data which are not correlated. This is

a reflection of less independent information in two observations which are
correlated than in two which are not. It is worth noting that the recog-
nition given interobservational correlation is a prime distinguishing
feature of the statistical interpolation method by comparison to, for
example, a successive-corrections method.

Effect of Random Errors

We now reconsider eqns. (37) and (38), and assume that the two
observations are uncorrelated, but have random errors;
but 1, C2 # 0. The weights then become

a2 = G2/(. 2+E.2) (46)

a1 = G 1/(&
2 +c2). (47)__~~~~ ~ ~ ~ ... .__ ., _,1 X ____ ___

All else being equal, the effect of random observational error is to
reduce the weight given the data. By default (see eqn. 35), this in-
creases the influence of the background field in the final analysis.
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phi ~ Effect of Correlated Errors

We now remove the assumption that e12 = 0. For simplicity, we
will continue to assume that the true forecast errors are uncorrelated
(flf2 = 0), but that the observational system exhibits a large-scale
bias, so that F1y2 # 0. Then the weights become

G2 EI 2__ G (-a2+ s2) E G2 ___ $12 2 -s G
a2 - 2 C2 2 2 1 (2+e^23 - e1£22 (48)a2 2a 2 +s 2 2(- 2+ )

2 2 2 2 (a L+

1 1 2 2 2

a~ - G1( 22 + 2 2 ) -2 c G
a 1 2 122 (49)

(a2 +C 2)(% 2+e 2 )_s 
1° 1 2 2 1z2)

To further simplify,weassume-

G1 = G2

O2 = a 2
2

j ~~~~~~~~~~~C 2 : C 2'
2

The weights reduce to

G [ c152Gal = a2 = 71 2 +le (50)
E:.~ 2 E.

Therefore, the effect of correlated observational errors is also to reduce
the weight of the observations, beyond the reduction introduced by random
errors. It should be noted, however, that this applies only to univariate
analysis. Bergman (1978) and Seaman (1977) have shown that correlated
errors in mass observations can improve wind analyses.

Extrapolation

Finally, we note a peculiarity of statistical interpolation which has
previously been mentioned by Kruger (1969), among others. This problem
arises when pairs of observations are close together and are approximately
collinear with the grid point being analyzed. Under these circumstances,
the datum closest to the grid point has its weight increased, while that
furthest away has its weight decreased, even becoming negative. The result
is that the analyzed residual may be larger than either of the observed
residuals; hence, the term 'extrapolation.' This behavior can be examined
by considering two observations located some distance from the grid point
being analyzed, as in Fig. 11.
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We imagine the positions of the two data points outlining a circle of
radius r, the center of which is a distance x from the grid point. The
data points will be allowed to move around the circle to encompass several
positions, including those indicated in Fig. 11. In any position the data
are separated from the grid point by distances R1 and R2 and from each
other by the circle's diameter 2r.

For simplicity, we assume the data to be error-free. The analysis
equation is then

Fa = fg + a1 Fl° + a2 F2, (51)

and the weights al, a2 are determined by solving the pair of equations

1
2 al + flf 2 a2 fg52)

1 2 9 ~~~~~~~~~~(52) .

f2 fl al + 22 a2 fgf2 2

However, it is somewhat more convenient to pursue the argument after
normalization by the forecast error variance al2 = 22= 02:

a1 + Pa2 = G I

(53)
pa1 + a2 = G2

where

Ilf2 = 2p

and

G 1 = _- _

We may then write the solution as

a1 = G1 - pa2 (54)

G2 - pG1

2 1 p2 (55)
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Now consider the case when the angle 0 in Fig. 11 is equal to 90°: if

the correlations are assumed to be functions of distance only, then
G2 = G1 since the two data points are equidistant from the grid point.
The weights become

Gal = a2 = G (56)
+ p

That is, the weights are identical, and both are diminished by the inter-
observational correlation p.

We next consider the two observations approximately collinear with
the grid point. Since we have assumed that the correlation function
depends on distance only, G1 > G2. If r is small enough, the inter-
observational correlation will be large enough so that G2 < pG1·
The weight on the observation farthest from the grid point, a2, is thus
zero or negative for the equality or inequality, respectively.

Thus, when e = 90°, the weights are equal and positive. As 0
decreases, an angle is reached where the equality holds. At that point,
a2 = 0: the observation receives no weight. For smaller angles, a2 < 0.
When this occurs, any gradient in the observed residuals is magnified as
it is extrapolated to the grid point.

We may note several points concerning this configuration:

1) The two observations need be only approximately collinear
with the grid point;

2) As P 1, a2 becomes large negative and a1 becomes large

positive. Thus, the closer the two observations are to each
other, and the closer they are to collinearity with the grid
point, the more exaggerated is the extrapolated solution;

3) As G, + 1, the larger must be the interobservational correlation
in order to force a 2 < 0. Thus, as the first observation is
located closer to the grid point, the less likely it is that an
exaggerated extrapolation will occur.

4) The problem can be avoided by not considering highly-correlated
observations in the analysis; observations which are located
close together probably should be averaged into one datum prior
to the analysis.
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Figure 11. Schematic example of arrangement of data (circles) which canlead to an extrapolation solution to the grid point (cross),
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V. Summary

The theory of statistical interpolation has been described in general
terms. Attractive aspects of the method, such as its ability to account
for data distribution through the interobservational correlation, and its
accounting for random and correlated observation errors, have been examined
and illustrated. It is worth repeating that this theory rests on a number
of assumptions:

- the forecast error statistics are at least locally homogeneous;

- the mean forecast error is zero;

- three-dimensional correlation functions can be represented as
a product of horizontal and vertical components;

- analytic functions are sufficient to model the actual
correlation functions;

- analyzed corrections to the mass and motion fields are
related hydrostatically and geostrophically.

Additional assumptions are necessary for practical application, and
these are discussed in the next lecture of this series.
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APPENDIX

~
The p(ht) cross-correlation may be determined from the appropriate

entry in the covariance table (Table 1) and eqn. (11):

9 9 ~34,j 2 [I+ Kq2] -I}
Ohat p(ht) = ht = - q(hh) = R 21 + Kpq2 1R Dq R qP

where q = Zn Pi/Pj,i being associated with h2 50 , and j being associated
wTtiithe various t-values. Note that we have assumed no horizontal
separation between points i and j, so that the horizontal covariance
component is unity. Performing the indicated differentiation, we obtain

p(ht) = M Gqa(hh)

assuming that ch2 is invariant with q. By a similar procedure, we may
develop the following expression for p(ut):

~~~~~~~2

_ ='~h .: _ ____
P (Ut) 9 (~h.] ~-Gh 2 2Khe (2K~q) hh

~~ ~P(ut) ~fR -' at.) S2

____ where we have assumed that 7- [e h ] = maximum as well as that ah 2

is constant. In ordert- determine the ratios ah/au and Oh/at,
we note that from Table 1 that

u(n) u(y) g2 a 2 hh

and with eqn. (11) 

.g 2
u(nY)u(y) = h2 (2Kh)[ 1 2Kh(ny)2 ] e -Kh

( n-y)2

where the vertical component is assumed to be unity. At zero separation
(:(= y), the left side becomes u 2 , and we have

2 2- 2_ _ -2K_ _u- h g2 ~ .

or
f

Oh/u = g/"- · _

Similarly, from Table 1

= 2
t(?) t(z) = (g)2 D--(hh)

R ~~az
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and from eqn. (11), with zero horizontal separation,

2 T h2 [1+ (-)2]
t(O) t(z) = - 2KpR-j h 1 +K(z) 2 2

(1- 4Kp(C-z)2[1 + K (_z)2]-1)

As the separation (~-z) vanishes, the left side becomes ao2, and we have

at2 = 2Kp [ h2,

or

Ghlat = R

p

Therefore, for h2 = 40 m2 we can determine the ratios as

ah/at = 9.26 m deg- ,

and

ah/au = 5.26 x 10-3m(m sec-')-'

It is worth noting in passing
ou is sufficient to determine

that independent knowledge of oh, ot, and

Kh and Kp.h ' p
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